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1.  Introduction 

1:A We propose to outline a method for deriving optimal 

rules for inventory policy.  The problem of inventories exists 

not only for business enterprises but also for non-profit 

agencies such as governmental establishments and their various 

branches.  Moreover, the concept of inventories can be gener- 

alized so as to include ^not only goods but also disposable 

reserves of manpower as well as various stand—by devices.  Also, 

while inventories of finished goods present the simplest problem, 

the concept can be extended to goods which can be transformed, 

at a Lostj into one or more kinds of finished goods if and when 

the neec for such goods arises.  The following notes prepare 

the way for a more general analysis of "flexible planning." 

1 :B '»Ve shall make explicit use of the concepts of proba- 

bility and utility.  Probaoiiities enter because at least some 

of' those variables that are not controlled by the policymaker 

are ranoom variables.  Of these, the quantity demanded (from 

hirh) per unit of time is the principal one.  Some other variables, 

such as the purchase price, or the time required for the fulfill- 

ment of an order ("pipeline time") may also be random, but will 

not be considered as such in the present paper. 

1:C  If the future were certain, the policymaker  would 

determine the variables under his control — for example, the 

amounts he orders — in such a way as to maximize a certain 

quantity, called net utility (or minimize its negative, called 

net damage, or net loss).  In enterprises run for profit, the 
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total money profit earned over a long period of time (with 

future profits possibly converted into present values by using 

a time—discount factor based on some appropriate rate of 

interest) is a convenient measure of net utility,  accordingly, 

most of the existing writings on the inventory control of 

business firms make explicit use of the notion of maximum 

profit.  These writings, though often not too clear in presen- 

tation and not developed in detail, do provide, in essence, a 

satisfactory solution for the case when all variables not 

controlled by the firm are known in advance with certainty. 

1:D The natural extension to the case when at least some 

of the non—controlled variables are random variables, is to 

maximize the expected (actuarial, average) value of profit, or 

of utility.  This presupposes the explicit use of the probability 

distribution of demand (or, more generally, the joint probability 

distribution of demano, pipeline time, purchase price, and other 

non—controlled variables).  This aistribution either can be 

known in advance, or may have to be estimated wich the necessary 

precision as the data on demand, etc., are being accumulated, 

1:E The random nature of the non—controlled variables is 

recognized implicitly in the customary provision for "cushion" 

or "safety—margin" stocks.  However, we have not been able to 

find in the business literature an explicit rule of determining 

"cushion stocks" that would maximize expected profit (or minimize 

expected loss), given the relevant probability distribution. 
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1:F Explicit use of a (PoissonJ distribution of demand 

was made, in a pathbreaking manner, by Thornton C. Fry [6], 

This was later developed by Churchill Eisenhart [3} and 

apparently also applied by R. H. Wilson [lOJ.  In this approach, 

the recommended rules of action are derived not by prescribing 

th£t the expected net utility be a maximum but by prescribing 

that the probability of stock depletion should have a certain 

level.  This is analogous to the fixing of a "significance level" 

by a hypotheses—testing statistician of the pre—Wald era.  (In 

various writings since  1939» Abraham V.'ald has suggested choosing 

statistical test—procedures so as to minimize the expected loss 

to the policymaker.)  The choice of the suitable probability of 

stock depletion must ultimately depend on utility considerutions, 

albeit in a hidden fashion.  We shall try to make such considera- 

tions explicit.  (See also 3JE below.) 
- 

1:G  In "non-profit" organizations utilities other-than 

money must be used.  ns for uncertainty, it is of course always 

'present in non-profit no less than in commercial organizations. 

Various organizations have their own rules for taking care of 

uncertainty.  However, it is not always obvious how these rules 

were uerived from considerations of utility (e.g., the loss caused 

by the inability of a supplying agency to meet an-urgent require- 

ment) and from considerations of probability (e.g., the 

probability that a requirement will not be met). 
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1 :H To sum up our ov/n approach:  the net utility to any 
i 

policymaker is, in general, a random variable depending on 

certain conditions (i.e., on variables or on relations between 

variables).  Some of these conditions he can control, others he 

cannot.  The former are policy means (strategies).  The non- 

controlled conditions are, in general, defined by a joint 

probability distribution of certain variables.  Rational policy 

consists in fixing the controlled conditions so as to maximize 

the expected value of net utility, given the probability distri- 

bution of non—controlled conditions.  When this probability 

distribution aegenerates into a set of non—random variables we 

iiave the case of "certainty."  In this limiting case, net utility 

itself is a non—random variable,  to be maximized by the policy— 

maKer. 

1:1 as alreauy mentioned (in 1:B), at most one of the 

non—controlled conditions will be regarded in the present paper 

as a random one:  the rate of demand for the policymaker's 

product.  Other non-controlled conditions will be regarded as 

constants, or as relations with constant parameters:  the relation 

between storage cost and the size of industry;  the relation 

between purchasing price and the size of order ("supply functiori"); 

and the cost of making an order. 

as to controlled conditions, we shall assume that the policy- 

maker can control only the size of the orders he makes.  This 

eliminates, for example, such policy means as the fixing of the 

selling price, or the use of advertising, to influence demand; and 

any bargaining with buyer(s) or competitor(s). 
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.although it would be interesting and useful to broaden the 

problem in the various directions just indicated, we believe our 

specialized formulation is a workable first approximation.  By- 

regarding the order size as the only controlled condition, and 

the aemanu as the only random non—controlled condition, we do 

take account of most of the ;najor questions that have actually 

arisen in the practice of business and nonprofit organizations. 

1:J section 2 of the present paper will give the essentials 

of the optimal stock determination under conaitions of certainty. 

The remaining sections will treat the uncertainty case, considering 

demand as the only random variable.  Section 3 discusses a static 

model.  Section 4 formulates the mathematical problem for a 

simplified dynamic model, for which Section 5 outlines a method 

of solution.  Section 6 contains examples:  solutions for the 

simplified dynamic model are given, assuming specific distributions 

of demand.  Possible extensions of this model are briefly defined 

in Section ?• 

if, 
Before formulating the problem, a study was wade of the existing 
business literature on inventory control, using freely the 
comprehensive bibliography jjüj that was compiled by T. H. whitin 

ana Louise B. HaacK for the Logistics uesearch Project of the 
üffice of Naval hesearch at the George Washington University. 
Some-of the aoove suggestions, broadening the problem so as to 
embrace the models of perfect and imperfect markets as discussed 
in the academic economic theory, are uue to Mr. Markowitz, 
Cowles Commission for Hesearch in Economics. 
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2.  The Case of Certainty 

.2:A Let x De the knov.-n constant rate of demand for the 

product of the organization, per unit of time.  Let the gross 

utility (i.e., utility before ceducting cost) obtained by the 

organization through satisfying this demand, be 

ax + a0 . 

We can assume a,-* = 0 (this will not influence the solution of 

our problem).  In this case, if the organization is a commercial 

firm, § is the selling price; otherwise § is.the value to the 

organization of an operation of some kind.    In general, § is 

a function of x; but it will be sufficient, for our purposes, 

to assume a constant.  Denote by b the purchasing price (in 

money' units or utility units) of one unit,  because of the 

possible economy of large scale orders, b is a non—increasing 

function of the amount oraered:  b = b(S), b' < 0, assuming 

differentiability.  Let K be the cost of handling an order, 

regardless of its size.  Let z be the stock, and let the cost 

of carrying it over one unit of time be . 

const. + 2cz , 

the constant part being the overhead cost of storage.  In general, 

the coefficient c may be a function of z, but it will suffice 

here to assume c constant. 

.2:B assume, to begin with, that orders are fulfilled 

immediately.  Then orders must be made whenever the stock reaches 
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zero:  to order earlier would cause unnecessary storage cost, 

and to order later would cause unsatisfied demand.  The amount 

ordered must equal the maximum stock, S.  The average level of 

stock will be S/2; see Figure 1, where 6 is the time elapsing 

Time 

Fig. 1 

between making an oraer and having the stock completely exhausted, 

Clearly S (or 6) is controlled by the policymaker, and 

(2.1) xe . 

We shall first assume that Ö can take all real positive values 

(but see 2:£J.  The problem is to choose the optimal S and 9. 

Consider a time interval of 6 units, beginning with the ordering 

of S units of goods and ending when the stock is exhausted.  The 

total utility derived during this period, apart from a constant 

overhead cost of storage,  is 

aS - bS - 2ce(|) - K , 

We neglect the fact that a part of the overhead cost of storage — 
the interest and the amortization charge on stored goods — depends 
on the purchasing price b(S); the required modification is simple. 
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or,  per unit of time,  by   (2.1), 

(2.2) ax - bx - cS - (xK/S)i. 

Suppose the future time over which utility is maximized — the 

"horizon" — is either infinite or is long enough to be considered, 

without great error, as a sequence of an integral number of 

periods, of t< units each, with initial stocks at zero.  Then 

the maximizing-, of utility over the "horizon" with respect to S 

is equivalent to the maximizing of (2.2), or (since § is 

independent of S) to minimizing the cost 

(2.3) C = xb(S) + cS + (xK/S) . 

Hence the optimal value of the amount ordered, S » S*, must 

satisfy the ecuation 

(2.4) xbMS*) + c » xK/(S*)' 

and the inequality 

(2.5) b"(S*) > -2[c + xb,(3*)]/3« 

I 

2:C We shall assume the purchase price function (supply 

function) b(S) linear, so that b" « 0 identically and 

(2.6) b(S) = b0 - h^3       (say) 

with b, > 0.  Then by (2.1), (2.3) 

(2.7)      G = b0x + x(c - b,x)© + K/e = 0(6), say. 
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The optimal re—ordering period b « 0* is 

(2.6) 9* = VVxlc - ^x) . 

Note that for ö* to be real and finite, the following constraint 

upon the demand, and upon the conditions of storing and purchasing, 

must be satisfied: 

0 < b1 < c/x . 

The minimum cost, C*, is by (2.7), (^.b) 

(2.9) C* - G(Ö*) = b0x + 2//Kd , 

where 

(2.10) d - x(c - b-jx) > 0, 

and the positive root is taken.  The optimal size  of an order is 

by (2.6), (2.1), 

U. 11 ) S* - VKx/U - bjx) . 

Hence, as should be expected, the optimal order size, and therefore 

the optimal ordering interval is the larger, the larger the cost 

K of nandllrij-, an order, the smaller the unit storage cost c and the 

larger the effect b« of the size of order upon the unit price. 

We believe this is, in essence, the solution advanced by 

R. H. Wilson fid), formerly of the Bell Telephone Company; and also 

by other writers; see [l]. 
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2:D If v;e now introduce a constant "pipeline time," T> 0, 

elapsing between order and delivery, this will not affect S* or 

Ö*, but the time of issuing the order will be shifted T time 

units ahead.  The order will be issued when the stock is reduced, 

not to zero, but to xT units. 

2:E The policymaker may not have full control of the length 

of the time interval between any two successive orders.  Trans- 

portation schedules or considerations of administrative convenience 

may oe such as to make ordering impossible at intervals of length 
o / 0 other than, say, 6 f t^*.  For example, 9 may be one business 

day or week; or 0 may be the period between two visits of a mail- 

boat to an island depot.  Orders of positive size may be spaced 
0 

only at intervals of length Ö ■• m6 , where m is a positive integer. 

We have to find the value m * m' that will minimize the cost (2.3). 

The corresponding optimal length of interval between two non—zero 

orders will be denoted by b', and the optimal order size by S', 

The optimal set (mf , €>', S') is unirue since, as previously 

indicated in 2:B, it can never pay to possess a non—zero stock at 

a time when reordering takes place (or, more generally, T time 

units after the reordering, T > 0; see 2:D).  Hence, at a reordering 

time, the situation is always the same as that at the beginning 

of the entire process.  Therefore, there is no possibility of 

gaining by having a variable d' or S'. 

To find the optimal values for m, 9, S, note that (2.7) is 

a continuous function of d, with a unique minimum at 9 = 6* when 

6 is not restricted. 
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Suppose first that the permissible interval length 6° > ©*, 

and therefore the interval length between the successive non—zero 

orders, 6 " me > mo*. Then U.7) is smallest when m - mT - 1, 
o       o 

Hence 9' «9 , S' = x9 .  For example, if 9* = 14 days but orders 

can be placed only every 9° • 30 days, then optimal reordering 

period 9' = 30 days (not 60 or 90, etc.).  Suppose next that 

9 < 9*, and that the ratio n - e*/90 is an integer, n > 1.  Then 

obviously (2.3) is minimized at 9' " 9* " n90; that is, m' - n, 

S' - S*.  (For example, if 9* = 14, 9° - 7 days, then orders will 
o 

be issued every 9' - 14 days.)  Finally, if 9 < 9* but the ratio 

n is not an integer, consider the integer n, n<n<n+1.  Then 

m' = n or n+1,  i.e., the optimal length, 6', of the interval 

between two successive non—zero orders will be either n9* or 

(n+1)91<t, whichever leads to a smaller cost (2.3)»  (For example, 

if 9* = 11 , 9° = 7, then 9? = 7 or U« ) 

2:F As an important generalization of the case of fixed 

intervals between (positive or zero) successive orders, one would 

have to consider the case when orders can be made at any time, 
o 

but at varying hanoling cost K.  Let K ■ K for the instants 

0,9°, 29°, •*•, and K = K+ > K0 for all other instants.  (This 

degenerates into the case of sub—section 2:E when K is iniimtej 

Let us refer to periods which are multiples of 9 as 

scheduled periods, the others as non-scheduled periods.  If we 

consider only the latter, then by (2.9), the minimum attainable 

cost is bftX + 2 fyK  d .  For scheduled periods the cost, by (2.7), 

(2.10), is bgx + de + (K0/9).  The range of values of 9 for which 



16 November 1950 
Page 12, P-189 

the last expression is not greater than the minimum cost attainable 

with a non—scheduled period is, then, 

or, 

or, 

db  +   (K0/e)  < 2 VK*d   , 

de2 - 2 yic^d Ö + K0 < 0, 

1 - 1 

(2.12) d        (/K* - l/K+ -  K0]  < ö  < d        u/lC*   ♦ VK+  - K0j   . 

Therefore, a scheduled period will be used if a multiple of 6° 

falls in the interval (2.12); otherwise, the optimal non—scheduled 

period, VK /d, is used.  Replacing 9 by no  in (2.12) and dividing 

through by 9 yields the following condition for using a scheduled 

period:   The interval from 

(2.13) d 2 (N/T - f^T^0)/^   to d 2 (V? + ^TY^/e
0 

should contain a positive integer. 

Clearly, a sufficient condition is that the interval (2.13) 

contain the number- 1, while a necessary concition is that the 

upper limit should be at least 1.  Suppose the upper limit is at 

least 1 ana at the same time at least twice the lower limit.  Then 

either 1 belongs to the interval (^.13), in which case a scheduled 

period yhould be used, or 1 lies below the lower limit.  Let n be 

the largest integer below the-lower limit of (2.13); then the 

integer 2n lies below the upper limit and above the lower, so that 
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again the  interval  (2.13)   contains  a positive  integer. 

The  condition that the upper limit  be at least twice  the 

lower is that 

2 [4? - VK+- K0) < 4^+^-i0 , 

which is equivalent to K+/K0 > 9/8.  If 

(2.14) K+/K0 > 9/6 and //Ü* + //K+ - K0 > e0d^ , 

then a scheduled interval should be used. 

(2.14) is a sufficient condition while (2.13) is both 

necessary and sufficient. 

2:G In this and the next two sub—sections, we conclude the 

discussion of the case of a certainty by remarks on the problem 

of "aggregation."  Let there be several commodities, numbered 

i = 1, 2, **•, and characterized by, generally, different storage 

cost coefficients c. and different purchase price functions b.. 

Let us first assume that the cost, K, of handling an order does 

not depend on the size or composition of the order.  The problem 

is to find optimal ordering intervals for the several commodities, 

possibly arranging the cor.imodities into subsets so that all 

members of a subset are ordered simultaneously. % 

Consider the set of the first q commodities.  Assuming a 

linear purchase price function for each commodity and applying 

the notations of  sub-section 2;C, with a commodity subscript i 

where necessary, compare the „following two costs (per unit of 

time):  1) the minimum cost, ^2 c-5 0^ ordering, buying and 
i = 1 i 
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storing the q commodities, when each commodity is reordered at 

intervals of length 6. chosen so as to minimize C^;  2) the 

minimum cost C of ordering, buying and storing the commodities 

when all are ordered at the same time at intervals of length 9. 

We have by (2.0), (2.9), (2.10), 

(2.15) ©* »VK73T .   d. - xi{ci-b1ixi) > 0,   i = 1,---,q, 

(2.16) Z C*;» Z b^x. + 2 ^A/KdT , 

where the summation is from 1 to q, and every root is positive. 

On the other hand, ü » 9 minimizes the expression 

2>oixi * e2; di +.K/e. 
/ 

analogous to the right—hand side of (2.7), with Z ^i replacing d. 

Hence 

(2.17) 9 - VK/Z d.  ; 

(2.18) C = X büixi + 2 VIZ ™±      . 

the ro.ot being positive.  C is always smaller than ^_ C-, since 

the square of Z V^T exceeds the square of A/^" Kd^ by 

2 ZZ ^ VdTHT ,     i / j, 
i  j       J 

which is positive.  Thus, if K does not depend on the composition 

of the order, it is preferable to order all q commodities of the 

I 



16 November 1950 
Page 15, P-1Ö9 

considered subset at the same time, provided the common period 

length is determined as in (2.17).  This is true for any q, and 

therefore also for the set of all comiuodities. 

2:H The situation becomes different if the cost of handling 

the order aepends on its composition.  Let, for example, K(i) be 

the cost of handling an order (of any size) for the i   commodity, 

K(i, j) the cost of handling an order for any quantities of 

commodities i and j, etc.  ^ven if we still maintain the assumption 

that.K(l) = K(2) * ••• = K, the advantage of aggregation may 

disappear if we ao not maintain any more that, for the given set 

of q com.odities, also K = K(1, 2, •••, q).  (For example, the 

handling of an order requiring the services of an aircraft expert 

as well as a canned food specialist may be much more expensive 

than the ordering of these commodities separately.)  We have, then. 

in fact, to compare v"^ 51 V^T with 4/K{'\ , ••♦, q) /;/;£ d. , or 

KnT^/dTj with K(1, 2, • • • , q) 21 d. . Aggregation is advantageous 

if the right—hand expression is smaller than the corresponding left- 

hand one, i.e., when 

(2.13) K(I, ^ •/•. q) < 

In particular, if d. « d. = d for all i, j, the above condition 

becomes 

&LU ^. .•••. qi < ad = T < ^T-= ^ '' 
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i.e., it is required that the coat of ordering the q commodities 

separately should be less than q times the cost of ordering them 

jointly.  In the general case d« £ d.»  i, j = 1, ••*, q, the 

condition (2.18) can be interpreted as follows.  Define e, ■ V^T 

Then 

(2.19) 
2       2   _2 

where Cn   is the standard deviation of the e's and e their mean, e 

Also, 

(2.20)     (^VdT) - (^ ej - q 
2     2-2 

e 

From (2.18), (^.19) ^nd (2.20), the condition that aggregation be 

advantageous is that- 

(2.21) K'i-2-r-''1 < —? -. 
2 -2 

9 e_ 
q(<re + e )  V + 1 

where V ■ a   /e    is the coefficient of variation of the e's.  The e ' 
expression 1 / (V + 1) indicates the dissimilarity between the q 

considered commodities with respect to their storage cost and 

purchase conditions.  Condition (2.21) states that aggregation is 

advantageous if the joint cost of ordering the set of q commodities, 

multiplied by a "cost—dissimilarity index," is less than q times 

the cost of ordering any one commodity separately. 
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2:1 k  problem analogous to th&t ol" optimal aggregation of 

commodities into groups, is that of the optimal number of storage 

depots; or more generally, the optimal (bivax^iate) distribution 

of orders among the givers of orders (depots) and the receivers 

of orders (manufacturers and transporters).  This presupposes the 

knowledge of the storage cost "" ~ ch say — — of the h  order—giver 

and the knowledge of the big—lot price reduction   b1^ say — — 

of the k  order—receiver; these result in a joint frequency 

distribution of a parameter dj. , analogous to the paratneter d. in 

(2.15).  Some fundamentals of this problem, given certain parameters 

of utility and cost, were treated by Tompkins in [ Ö J. 
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3•  A Static Kodel with Uncertainty 

3:^ Suppose an organization wants to choose the level z > 0 

that the stock of a certain commodity should have at the beginning 

of a given period, in order to provide for the demand (recuirements; 

that will occur during that period.  We shall choose the time unit 

to be e'-ual to the length of this period, and use the notations of 

Section 2.  Thus x > 0 will denote the demand during the period. 

However, x will now be regarded as e random variable.  We shall 

suppose that, the organization knows the cumulative distribution of 

demand F(x)  (but see 7:D below).  The utility, to the organization, 

of delivering J" units of commodity will be 

( 3 • 1 )       a £_ + a^, ,        (a constant) . 

The delivery during the period is a random variable: Cj equals x or 

z, whichever is smaller.  Hence the expected utility derived from 

satisfied demand is 

i}.2) az^l - F(a)] + a T  3c dF(x) + a0 . 

We shall assume that the amount to be spent in purchasing £p units is 

(3.3)       C>(b0 - b1 "^) 
+ K;   b0 > 0,  b1 > 0 ; 

so that as in Section 2, the purchase price is either constant or 

linearly decreasing with the amount purchased.  As before, the cost 

of handling an order is üenoted by K but this term will not play any 

further role in the static model.  However, we assume here that the 
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whole stock z is to be purchased (so that always C, ■ z), and that 

no utility is derived from satisfying demand after the period^ 

end.  Finally, the cost of carrying over our period the stock, which 

has level z at the beginning of the period, will be assumed to be 

(3.4) const. + cz . 

Then, apart from a "depletion penalty"  which we shall introduce 

in 3:B, the net expected loss (the negative of net expected utility) 

is 

n z 
(3.5) const. + z(c+ bü-b1z) - az [l - F( z )^ - a / x dF(x) . 

3:B  We now define TT , the "depletion penalty," as follows: 

if x < z, there is no unsatisfied demand, and TT ^ 0; but if x > z, 

the organization would be willing to pay an amount IT  > 0 to satisfy 

the excess, x — z, of demand over available stock. 

We assume the penalty function as riven.  The organization — 

whether commercial or noncommercial — has a general idea of the value 

it would attach to the damage that would be caused by the non- 

availability of an item; it Knows the cost and the poorer performance 

of emergency substitutes.  The penalty for depleted stocks may be 

very high:  "Ä horse, a horse, my kingdom for a horse," cried 

defeated Richard III. 

3:C Note that, in the case of a commercial enterprise, an 

independent penalty function TT ■ TTCx - z) need not be introduced. 

It can be replaced by considerations on "losing custom," as in the 
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following model.  Let F. be a Poisson distribution of demand for 

the period (t, t+ 1).  Its mean, /\ i is proportional to the 

probability that a member of a large but finite reservoir of 

customers will want to buy during that period. Z^. equals //-t_1 

if the demand during (t—1, t) was satisfied.  But if that demand 

was in excess of the then available stock, /^ is smaller than 

jK—yy   by an amount proportional to the unsatisfied demand, as some 

of the disappointed customers will drop out of the market.  The 

problem is to maximize total expected utility over a sequence of 

periods (0, 1), (1, 2), •••, if the initial distribution FQ is 

given.  Such a dynamic model would be more complicated than the 

one we are going to treat in Sections 4—7. 

3:D We shall assume 

TT * A + B(x - z),   if x > z, 

TT ■» ü  otherwise, 

where ü, B are non—negative constants, not both zero.  Then fT is 

a random variable, with expectation 

(3.6)       (A - Bz)[l - F(z)] + B /  x ^^ ' 

Accordingly, the expected net loss, taking account of expected 

penalty, is the sum of the expressions (3-5) and (3.6) and equals, 

apart from a constant, 

(3.7),   z(c+ b0-b1z)+ A[l -F(z)]- (B-f a)z[l-F(z)]- (B+ a)^ x dF(x) 

- L(z) , 
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say.  The stock level z = z  is optimal if L(z ) < L(z) for every 

z.  Suppose the distribution function F(x) possesses a differentiable 

density function f(x} s dF(x)/dx.  If the absolute minimum of L is 

not at z "0, it will be at some point satisfying the relations 

dUz^/dz = Ü,  d2L(z,{t)/dz2 > 0, 

which imply  that 

(3.6) [c+ b0-2b1z*]  - Af(z*)  -  (B+ a) [l -Fiz*)]   = 0, 

(3.9) -2b1  - Äf»{2S*)   +   (B+ a)f{z*)  > 0 . 

3:E In the economist's language, the first bracketed term in 

(3.Ö) is the "marginal cost" (of buying and carrying an additional 

unit in stock); the remaining two terms yield the "marginal expected 

utility." 

It is seen from (3.6)   that the optimal stock z is determined 

by the following "physical data," or "non—controlled parameters": 

1) the demand distribution function F(^c); 2}   certain utility and 

cost parameters:  (c + bjO, b. , A,   and (B + a).  If, in particular, 

b1 ■ 0  (i.e., the economy of big—lot purchases is negligible), 

these parameters reduce to two:  n/(c + h,) and (B + a)/(c + b,-.). 

To simplify further, for the sake of illustration, suppose also 

that B « a = 0:  that is, the penalty is either zero or a,   independent 

of the size of the unsatisfieo demand; and utility derived from the 

functioning of the organization does not depend on the amounts 

aelivered.  Then (3.ö), (3.9) become 
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(3.10) f(z*)   -   (c  +  b0)/A;       fMz*)   <0. 

A graphical solution for this case is shown in Figure 2.  (Note that 

f'(z ) < 0 but fMz'J > 0; z* is the best stock level, but z' is not.) 

f(x)* 

(c+bü)/A 

3:F In some previous literature (Ref. [] 6 , 3 ])» the decision 

on inventories was related, not to utility and cost considerations, 

but to a preassigned probability (l — F(z)) that demand will not 

exceed stock.  The choice of the probability level 1 — F(z) depends, 

of course, on some implicit evaluations of the damage that would be 

incurred if one would be unable to satisfy demand.  In the present 

paper, these evaluations are made explicit.  On the other hand, 

since the value of the parameters such as n, B, a  can be estimated 

only in a broad way (at least outside of a purely commercial 

organization, where utility = dollar profit, and where models such 

as that of 3:C can be developed), it is a welcome support of one's 

judgment, to chec«<. these estimates by referring to the corresponding 

level of probability for stocK depletion.  For example, if the 
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distribution on Figure 1 were approximately normal, then to assume 

that penalty A is 100 times the marginal cost c + b,-, would be 

equivalent to prescribing that the shaded area measuring the 

depletion probability should be 0.3%; to assume that A = 10 

(c + bg) would be equivalent to making depletion probability ■ 5%» 

etc. 

3:G In the more general case, when B + a > 0 (but still 

b1 =0), a given optimal stock level z , and consequently a given 

probability of depletion 1 — F(z ) is consistent with a continuous 

set of values of the pair of parameters:  A/(c + b^,) = A', 

(B + a)/(c + bO ■ B', such as would satisfy the linear equation 

(3.Ö).  For example, if F(x) is normal, then an optimal stock 

exceeding the average demand by two standard deviations of demand 

(and, consecuently, a depletion probability of 2.3%), will be 

required by any pair of values of A', B' lying on the straight line 

intersecting the A' — axis at 13 &nd intersecting the B' — axis 

at 44; while an optimal stocK. exceeding the average demand by three 

standard deviations (and, consequently, a depletion probability of 

0.10/o), will correspona to a straight line intersecting those axes 

at 22Ö and 740, respectively.  Thus a set of contour lines helps to 

choose an interval of optimal stock values consistent with a given 

region of plausible values of utility—and—penalty parameters. 

> 
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4.  A Dynamic Model of Uncertainty;  Problem 

4:A The model described in Section 3 may be called a "static" 

one.  We shall now present a "dynamic" one.  In this model, the 

commodity can be ordered, and reordered, at discrete instants 

0, QQ, **,, t0Q, *••, where ÖQ is a fixed constant (but see 7:B). 

We can therefore use QQ  as a time unit.  Let x. be the demand over 

the interval (t, t+ 1).  Assume the probability distribution of 

demand F(x) to be independent of t.  Denote by yt the stocx available 

at instant t, not including any replenishment that may arrive at 

this instant.  Denote by zt the stock at t including the replenishment. 

Denote by o. the amount ordered at time t.  Let the time between the 

ordering ana the receivint": of  goods ("pipeline time") be T.  Then, 

(4.1) yt. - max ( zt_1 - xt_1 , Ü),     t « 1 , 2, • • •, 

(4.2) at+r = yt+r + ot, t « 0, 1, •••. 

In general, T is a non—negative random variable. We shall, however, 

assume T " 0 to simplify the analysis at this stage.  Then (4.2) 

becomes 

^•3) zt= ^t + ot • 

Choose tv/o numbers S and s, S > s > 0, and let them define the following 

rule of action: 

(4.4)       If yt > s,  ot = 0  (and hence zt " Vt), 

if y  < s,  ot = S — yt  (and hence zt • S). 
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Figure 3 shows the sort of curve that might be obtained for stock 

level as a function of time if such a' rule is adopted. 

S .. 

 1 1 1 1 U> 
Time 

Figure 3 

a    H- OIJV» W* Wil      \JJL       J *■   • 

^l V • / . 

s i s 

\7 
s 

 > 

Figure /f 
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4:B We shall assume (as we have done in Sections 2 and 3) that 

the cost of handling an order does not depend on the amount ordered. 

Let this cost be K, a constant.  Let the depletion penalty be A, a 

constant:  compare (3.4), with B ■ 0.  Let the variable cost of 

carrying a stock 2t during a unit of time be c, as in (3•4).  Assume 

the purchasing price per unit of commodity to be independent of the 

amount bought, and equal to the marginal utility of one unit (i.e., 

in the notation of sub—section 3:A, b1 »0, bQ ■» a).  That is, the 

utility of operations of the agency, in excess of the expenses paid 

for these operations, is assumed constant, apart from the cost of 

storage and of handling orders.  In the notations of 3:A, this 

constant is ZQ,  while K and c denote, respectively, the cost of 

handling an order (of any size) and the marginal cost of storage. 

Our assumption is an admissible approximation in the case of some 

non-profit agencies.  It would be certainly both more general and 

more realistic to make the marginal utility of an operation differ 

from its purchasing price as was the case in our static model.  But 

this will recuire further aiathematical work (see 7:A). 

4:C  If y0 is given c.nd values S and s are chosen, the subsequent 

values yt form a random process which is "Markovian"; see Feller ^5j, 

Chapter 15.  That is, the probability distribution of yt+i> given the 

value of yt, is independent of yt_i, ***» VQ'     During the period 

(t, t+1) a certain loss will be incurred whose conditional expectation, 

for a fixed value of y. , we denote by X(yt).  Unoer the simplifying 

assumptions of sub—section 4:B, 
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(4.5) /(y-) 
= /cyt  + A[l  - F(yt)]       for yt > s, 

cS   + A[l   - F(3)]   +   K       for yt  < i \ 

Thus the function >^(yt) involves S and s as parameters and is 

constant for y. < s.  Note that 

(4.6) i(ü) = i(S) + K . 

The unconditional expectation of the loss durinc (t, t+ 1), that is, 

the expectation of /(yt),,with yt as a random variable, will be 

denoted by 

(4.7) it - it(y0) . 

We shall write J^AVQ)   rather than xL only when we need to emphasise 

the dependence of i.+   on the initial stock level.  Clearly AQ^Y)   = ^(y, 

for every value y of y^. 

Figure 5 shows a possible type of graph fory/(yt). 

i(yt)^ 

Figure 5 
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4:D We now introduce the concepts of a discount factor, Ot-, 

and of "present value" of a loss.  If the value of y^.  is given, 
^0 

the present value at time tQ of the expected loss incurred in the 

interval {tQ + t, t0 + t + 1 ) is atE[i(yt +t)] - at^t(yt ).  When 

maximizing expected utility, the policymaker takes i-»to account the 

"present values" of losses, not their values at the time when they 

are incurreu.  In commercial practice, CX is equal to unity minus 

an appropriate marKet rate of interest.  In non-profit practice, 0L 

would have to be evaluated separately.  Later it will be shown, 

however (se^ Section 5:B), that, under certain conditions, the optimal 

values of the parameters S, s can be found for QL   essentially equal 

to 1 . 

If we now define the function 

My) -iQ(y) 
+ai1(y) + a2i2(y) + ••• 

we see from definition (4.7) that L{y ) is the present value at time t 

of the total expected loss incurred during the period (t, t+ 1) and 

all subsequent•periods when y. is given.  By definition L(y) involves 

the parameters S and s; ana the policymaker fixes these parameters so 

as to minimize ^{y.). 

4:E Now suppose yQ is (c;iven.  For a fixed value of y1 , the present 

value of th« total expected loss over all periods is 

(4.6)   /(y0) ♦ai(y1) -^Ey [i(y2)] + ^^^v^] + '"   , 

v;here we  h^ve  used  E     [i(y   )J   to  denote  the   conditional  expectation of 
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i.{yr)i   given the  fixed value  y1 .     N 

r  =  1 ,   2. 

because, of the fact that if y1 is fixed, the subsequent value y , 

r • 1, 2, * * *, is connected with y1 in the same manner that yr_1 

is connected with yQ if y1 is not specified.  Therefore the expression 

(4»ö) is equal to 

(4.9) i(y0)  *aJQiv1)  *0L*l,{y,)  ♦a3/2(y1)  +  ••-,« 

i(y0) +CxCi0{y1) +ai1(y1) +a2X,(y1) + •••]- 

i(y0) +aL(y1) . 

f    I 
The total expected loss over all periods from the beginning, which by 

definition is Lly^, is the expectation of the expression in (4.9) 

with y1 regarded as a random variable.  Hence 

(4.10) L{y0) =£{yü) +aB[L(y10 • 

To express the expectea value of My.. ) as a function of y^ we note that 

if yQ < s, then z^ = S and y1 = max (S—XQ, 0); while if yQ > s, then 

ZQ ■ yg and y1 = max (yg -- XQ» 0).  Thus 

S 
(4.10')      H^yi^J   Ä j   L(S-xJdF(x) + L(0)[l-F(S)]  for y0 < 8, 

y 
E^ly^] = f1^ L(yu-x)dF(x)+ L(0)[l -F{y0C  for y0 > 8. 
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(Notice thixt from the way we have defined the rule of action, 

L(y) is constant for Ü < y < s so that L(0) is unambiguously 

defined.)  Putting y^ "  y we obtain from (A.. 10) and (/f.lO^ the 

equations 

0S 
(4.11)   L(y)=i(y)+a/  L(S-x)dF{x) + aL( J) [j - F(S)] if y < s , 

OQ- 

(4.12)    L(y) - i(y) * OLC      L(y-x)dF(x) + aL(0) [l - F(y)]  if y 

Our problem is to find the function L(y) that satisfies (4.11), 

(4.12); and to minimize L(y) with respect to S, s. 

It is not difficult to show that L(y) and it(y) for each t 

are measurable functions of y, but we leave such technicalities 

aside. 
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5.  H Dynamic Model:  Method of Solution 

5:A  In treating the equations (4.1 1) and (J+.l-d) we drop for 

the time being the assumption that F(x) has a density function 

and assume only that the random variable x cannot take negative 

values.  In order to take care of the possibility that F(x) has 

a discontinuity at x ■ Q (i.e., a positive probability that x = 0) 

we adopt the convention that Stieltjös integrals of the form 

/  ( )dF(x) will be understood to have 0— as the lov.er limit.  We 

continue to assume that x(y) is given by (4.5) but it is clear 

that a similar treatment v.-ould hold for any non—negative function 

X(y) which is constant for Ü < y < s ana satisfies certain obvious 

regularity conaitions. 

Since l{y)   and L(y) are independent of y for o < y <. s, (4.11) 

tells us simply that 

pS 
(5.1)     L(ü) - i(0) +0L/   L(Ü-xJdf(x) + CXL(ü) [l - F(S)], 

while  putting y  =  3  in   (4.12)   ^ives 

5 

0 
(5.2) L(S}   -  i(S)   +0C  /    L(S-x)dF(x)   + OCL(ü) [l  - F(S)] 

Subtracting (5.2) from (5,1) we obtain, using (4.6), 

(5.3)    1(0) - L(S) - K , 

an expression which is in fact obvious since if the initial stock 

is 0 we immediately order an amount S at a cost K for ordering. 

W« shcill solve the equation (4.12) for the function ^(y), considering 
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L(o)   as  an  unknown   parameter,   anü  then use   (5.3J   to   determine  L{ü} 

On  the   right   side   of   (A.l^j   v;e  make   the   substitution 

V Y"~S V" 
(5.4) r    L(y-x}dF{x)   =   P        L{y-s;dF(x)   +  L(ÜJ   P      dF(x)   ; 

u 0 Jo 0 y-s 

the last term follows from the fact that L(y—x) ■ L(0) when 

0 < y —x < s.  How make the change of variables 

(5.5)    y - s = r\ , 

L(y) - L(r| + s) = X{r\)   . 

Putting   (5.4)   and   (5.5)   in   (z+.l^)   gives 

/I 
(5.6)        ^(r^) =i(r(+ s) +aL(ü)£i - FO^)] +a/   A(/|-x)dF(x), r( > o 

Equation (5.0) is in the standard form of the integral equation of 

renewal theory; see, for example. Feller's paper [4j.  The solution 

of (5.6) can be expressed as follows.  Define aistribution functions 

F (x) , n = 1, 2, **•, (the convolutions of F(x)) by 

(5.7)    F^x) = F(x), 

Fn*1(^   =^X  Fn(x-u)dF(u)  . 

Define  the  function  H^(x) 

OD 
-vi tit (5.Ö) H^(x)   -    ^.^"F  (x), u<   a<i. 

06 n = 1        n 
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It is not difficult to verify that the series in (5«t) converges 

for any value gf (X,   less than 1 or not.  Putting 

{3.9) R(r\)   '  i(/| + s) + OCL(ü) [1 - F(n)] , 

we   can  v/rite  the   solutiori   of   (5*6)   as 

(i-.io)       Xir[) = h(r() +  T K(r(~ x)dHa{x) 

■ RdQ) +   X  a.n /  R(n - x)dFri(x) . 
n»1        du n 

In  terras  of  L ana z,   ^'lU)   gives 

(5.11 ) L(y)   - i(y)   +aL(u) [l   - F(y - s)] 

+ /0        |i(y-x) +aL(ü)[t-F(y-x-s)]J-dHa(x) ,     y> 

Fro.ii   (5.3)   oin.d   (^.11)   we  have 

q c- 

(5.12) L{0)   - Ü = i(S)   +    T       /(S-x)dH^(x) 

+ OLIO )jl - F(S - s) +   r'      [1 - F( S - s -x )]dH£X( x) | . 

In (5.12) we have a linear equation which we can solve for the 

unknown quantity L(ü) v/hich has, as we shall show, a nonvanishing 

coefficient in (5.12).  This rives us the value of L(y) for y < s, 

ana we can obtain L(y) for y > s from (5.11), since every term on 

the right side of that equation is now known. 
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The coefficient of L(0) in (5.12) is 

(5.13)   1 -aJl-F(S-s) +  f        [l ~P(S-s-x)]dH0((x) > 

-   1 -OCJI -F(S-s) + H^S-s)- / 
S-s 

F( .-s-x)dHtx(x)l 

i-di-F(3-s) + i>:anF (s-s)- "Za^.^s-s) 
n = 1        n n-1        n   ' 

-   (1   - 00[1   + H  (S - s)]   . a 

Using ($.13) we obtain 

K + i(S) + f"  Si(S - xldH^x) 
($.14)   L(0) = 

(1 - 0Ü[1 + H (S - s)] 

Knowing L(y) from (5.11) and (5.14), the next step is to find, 

for a ;iven initial stock y-,, the values of s and S which minimize 

My-J.  We shall consider only the minimization of L(0), although 

the procedure could be worked out to minimize MYQ) for any initial 

stock YQ.     The procedure of minimizing L(0) is not quite so special 

as it may appear.  Suppose that for a given yQ the values of s and 

S which minimize L(yQ) are .denoted by s (y^) ^nd S (yg)»  If 

s'(0) > Ü and if s (y0) and 3 (yQ) are continuous functions of y^ 

(a point which, we have not investigated mathematically), then 

s (y0) ■ 8 (Q) for sufficiently small y^.  To see this we write 

L(y) = L(y; s, S) 
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to indicate the dependence of L on s and S.  Let I " (*# bj be 

a closed interval with ü < a < s (0) < b.  Take y0 small enough 
Al 

so that s (y0} is in I.  Now if yQ  is sufficiently small 

L(yo'> s ^ü^ 2^^o^ " min L(yo; s» s) = 
s^I 
3>s 

K + min L(S; s, S), 
sei 
S>s 

which is independent of yQ, Q.E.D. 

In 5:B an optimization criterion will be given which is 

independent of the initial level yn. 

We now re—introduce the assumption that F(x) has a probability 

density which is continuously differentiable, 

F(x) = / f(t)dt . 

We  recall  from   {1+.5}   that   liy) ,   for y > s,   is given by 

liy)   = K[I   - F(y)]   +  cy   . 

Consider the minimization of (5.14) with respect to s and 3. 

First we consider the case where S — s is fixed.  The denominator 

of (5.14) involves 3 ana s only as a function of S — s.  \*e therefore 

have to minimize the numerator of (5.14) with respect to S, subject 

;,o the constraint that Ü is at least as gr6at as tiie fixed value of 

S — s.  If the minimum value does not occur for 3 « S — s  (i.e., 

s =0), it occurs at a value of 3 for which the conditions 



16 November  1950 
Page  36,   P-169 

I 

ü-s 
(5.15)   c - AfO) + r"  [c - AfU - x)]dH0L(x) = 0 , 

(5.16)   -Af'(S) -J0   Af'(S - x)dHa(x) > 0, 

hold.  It should be noted that K does not enter into (5.15) and 

(5.16). 

If we drop the requirement that S — s be fixed, then s  and 

S , provided they satisfy the condition ü < s ^ S , occur at a 

point where equation (5.15) holds, together with the equation 

obtained by setting the derivative of (5.14) with respect to S — s 

equal to 0, taking the appropriate second—order conditions into 

account.  We also need here the assumption that H (x) is the integral 

of a function h (x), 

v*i ■ S* w^ ■ 
Then differentiation of (5.14) with respect to 3 — s gives, setting 

the derivative equal to 0, 

n3-s 
(5.17)   H[F(S) - F(s)] - c(S - s) + t. + [c-Hf(S-x)]Ha(x)dx . 

Presumably the minimization of (5.14) would be accomplished in 

practice by numerical methods. 

5:B  So far we have considered QL   as an arbitrary parameter. 

It is clear that if we let OL ■—> 1 , Keeping s and 3 fixed, the 

quantity L(J) becomes infinite.  However, as we shall see, the 

quantity (1 — CX)L(ü) approaches a finite limiting value whose 
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significance can be explained as follows.  Suppose that levels s 

and S have been fixed and that y0 is given.  We have mentioned that 

the quantities y. then form a Markovian ranaom process.  Moreover, 

the probability distribution of yt, as t —> oo, approaches a fixed 

limiting aistribution which is independent of yQ.  (See Feller, fS"}, 

Chapter 1$, for the relevant theory when K(x) is a step—function. 

The general case is more difficult and the proof requires restrictions 

on F(x), which are, however, not of practical importance.  See 

Doob ^2J.)  This implies that x., the expected loss in the interval 

(t, t+ 1) approaches a limiting value./  which is independent of yQ. 

(The losses during successive time intervals form a sequence of 

bounded random variables.) AS  we shall see, we can find the value 

of Jc   .  Then if we do not want to use a discount factor OC, one way 

to proceed is to pick s and S so as to minimize J  .  This is almost 
^ r TO) 

eouivalent to minimizing the total expected loss over a long finite 

time interval. 

nnother way to look at tbe situation is as follows.  The limiting 

aistribution of yt for large t is a "stationary aistribution"; i.e., 

if y^ has this distribution, instead of being fixed, then yt has the 

same aistribution for every t.  The expected loss during (t, t+ 1), 

if yt has this distribution, is just X . 

Since 

L(U) = iü(o) + 0^(0) + a£i2(u) + ••• , 

ana /t(u) —> / as t —> oo, we have 

(5.1Ö)   L(o)(i-a) = i0(u) + ap
;
1(o)-/0(ü)] +a [^(oi-i^o)] + ••• 
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The series 

i0(0)  +  [1^0] -i0(o)] ♦  [/2(oj -^(0)] *  ••• 

converges to the value Z     «-nd therefore, by a standard result of 

analysis, we have from (5.1Ö), 

lim L(0)(1 -a)   ' JL   - 
a—^i 

In order to determine / , we can then multioly the right side of 

(5.14) by (1 -O) and let a—>1, obtaining 

K + i(S) + r   X(S - x)dH(x) 

(5.19)   4 ^  00 1 + H(S - s) 

where  H(xJ   is  defined by 

H(x)   =     lim    H   (x)   =    X Fn(x)   . 
CL—> 1  ^ n = 1   n 

(It is not hard to see that the step 

3—s . r 3—s 
lim 

a—^ 
P        /(S - x)dH^(x) - P        1(3 -  x)dH(x) 

1 'JO x    Jo 

is justified.) 

Vie can then minimize the function in ($.19) with respect to s 

and S.  It should be noted that /    is of course independent of the 

initial stock yo- 
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6. K  üynamic Model:  examples 

ue   consider nov; some examples for a particular function F(x). 

It is aovantageous to use a function whose convolutions can be 

written explicitly.  From this point of view functions of the form 

(6.1 )    F(x) = -—E ■ /  u   e   du,   k > 0,  ß > 0, 
(k - l ) I uo 

are convenient [(k —1)1 is P(k) if k is not an integer] since by 

proper choice of ß   and K we can give any desired values to the mean 

and variance, 

k/ß 
_2 
X (x)  - k/ß      , 

and since F (x) is then given by 

nk 
F (x) e  [>-  unk- n     (nk - 1 ):u o 

-1  -/Su 
au . 

The  function H   (x)   is   then given  by 

(0.2) H aU)  "Ja    e      < 
n" 1 

nk    n    nk—11 
-i^-—Idu   . 
(nk -  1)1     J 

If k is an integer the summation in (o.2) can be performed explicitly 

giving 

(6.3) Ha(x) 
ßal/k    -x -/Su / k 

k Uo VJ-I J 

^d/kßu' 
3 I du 

where 0). ,   * * * » ^ are t'he *  roots of unity.  For example, if k = 2, 

we have Q*   = —1 , ^ = 1. so that 
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Vx) =^"Ju e     r       "e       /du' 

00 
It is instructive to find the value of X^  for the simple case 

f(x) = e x.  In this case, from (6.3), 

,x 
H(x) = ^  e u(eu)uu 

and we have 

b-3 

A. 03 

+ i(S) + ?        i(S - x)dx 
^0 

1 + S 

h + cS + ne  + 
ü-s 

/o rc< 3 — x) + ne 
—R +Xl^ dx 

1 + 5 - s 

K + cb + ne 0 + c{ü-s) -^(S-s)  + ^e ^(e c /o sz   ^     _—3^ _S—s _ , v 

1 + S - s 

K + cS + ne  + -^(S — s C/ a 

1 + S - s 

Letting 3 - s = ^ , we see that this expression, for a fixed value 

of ^, has its minimum (unless it occurs v/hen s = 0) when 

S = loee (?)~ loSe{1 + A) + ^ 
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7.  Further Problems and Generalizations 

To make the dynamic model more realistic certain generalizations 

are necessary.  We shall register them in the present section, as 

a program for further work. 

7:A Of the several cost and utility parameters used in the 

certainty model of Section 2, ana in the static uncertainty model 

of Section 3» we have retained in the dynamic uncertainty model 

only three:  c, the marginal cost of storage; K, the constant cost 

of handling an order; and A, the constant part of the depletion 

penalty.  V/e have thus dropped the parameters a, bQ, b1 , and B. 

The meaning of the first three of these was discussed in sub—section 

4:B.  It can be presumed from the equation (3»Ö) of the more 

developed static model    thai if we similarly developed the 

aynamic model, c could be easily replaced by (c + bQ); but that 

(B + a), would form an additional parameter, altogether excluded 

from our simple uynamic model.  Difficulties of another kind will 

occur when b^ > Ü, i.e., when there are economies of big—lot buying, 

which are due not to the advantage of handling one oraer instead of 

many, but to the cheapness of transporting (and producing) large 

quantities.  This will obviously modify the rule of action (4,4), 

as the loss that we ii.tend to minimize will depend on (3 — y*)» 

the size of the replenishment order. 

7:B  another direction in which the aynamic model must be 

generalized to become realistic, corresponds to sub—section 2:F of 

the certainty model.  The cost of ordering may be a periodic function 

of time, due to existing schedules of transportation and administrative 
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routine.     In  our dynamic inociel,   oruers   (zero  or  positive)   can be 

given  at  the  beginning  of each  period  of length ©Q "  1>   the   cost 

K of a  positive  order being   constant.     Suppose,   however,   that 
o 

instead,   K =  K     at   instants  0,   raB., ,   2raö0,   ••*,   where m  is  an  integer; 
+ +0 

and iv = K  at till other instants, with K > K .  For example, if 

8Q is one day, ITIÖQ may be one week, and instant 0 is the first 

Monday,  Given the other parameters, it may or may not be advantageous 

to place oraers on Mondays only.  Moreover, the integer m may itself 

be a controlled variable:  e.g., one may have to decide whether to 

make the orders daily, weekly, or monthly, a month not being an 

integral multiple of a week, and the cost of a monthly order being 

different from that of a weekly order. 

7:ü  The aggregation problem, treated for the case of certainty 

in the last three sub—sections of Section 2, arises of course also 

in the case of uncertainty.  The problem is important because the 

number of items hanuled cy any large organization (excepting possibly 

some highly specialized ones) is usually very large; and, usually, 

only large organisations are equipped to implement an inventory 

policy approximating the optimal one, since it presupposes either 

a good knowledge of the relevant parameters, or their statistical 

estimation. 

7:D We have assumed the distribution F(x) of demand per unit — 

perioa to be ^nown — presumably estimated from previous samples, 

hCtual estimations of this distribution were carried out by Fry for 

the Bell Telephone Co.npany (see ..ilson [lü]), and by KrusKal [7] 

with the material of the medical branch of the U. S. Navy. 

I 
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Inventory policies based on such estimntes can be improved 

as the operations are going on. The logic of such "sequential" 

procedure can be outlined as follows: 

Using the dynamic model of Section 4 with s and S as the 

controlled parameters, now permitted to vary with time, denote by 

/*■/'[Sit) ,8(t) ;Fj the expected loss over an infinite period, 

given the non—controlled parameters A and K, but with the distribu- 

tion F(x) unknown.  Denote by Xt ■ (x.,..., x  .) the sequence of 

past observations on demand (fulfilled or not).  Find two functions 

S = S  (Xt) and s - s  (Xt) that would produce the best resialts. 

The best results can be defined as follows.  The expected loss 

depends on the functions S , s and on the unknown distribution 

function F, and can be written as the functional on S, s, F, 

/A» /^ (Xt), st (Xt); F] =^(5, s; F) . 

It is assumed that the distribution F belongs to some class 

specified in advance.  The criterion for the most appropriate 

choice of policies in cases such as this are still a matter of 

dispute.  One suggestion, inspired by '..aid's statistical writings, 

is that Nature should be visualized as having chosen F so as to 

maximize the loss; the aim of the inventory controller — or any 

other planner — should then, in accordance with the theory of games, 

be to minimize the maximum loss.  Professor Leonard J. Savage has 

pointed out that it would be better to regard the penalty to be 

assessed against the planner as not the total loss but only that 

part which is due to his ignorance, the "regret".  This is defined 
as the difference between the minimum expected loss in the case 
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tion  are  its  opponents  and  have the   choice  of demönds xt, 

within a   certain range.     If they   are  required  to  choose  F at  the 

beginning   of the  operation,   then the   proper rule  is to   choose 

the   functions  S,   s  so  as  to  minimize 

max A ( S,   s ;   F) . 
F 

However,   there  are  other possibilities.     For  example,   the  opponents 

might   be  permitted  by  the rules  of the  game  to   choose x.   at  each 

time t.     Then  the   specification  of the game will  have to   be   com- 

pleted  by a   statement  of the  enemy's  information  pattern  and  the 

costs  to him,   if  any,   in  choosinr  the  various   values  of  x     . 
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that  the organization knew the   distribution F,   and   the  expected 

loss  resulting  from  its actual  decision.     Given  F,   the  minimum 

expected loss   is 

min   A(Sts;   F)   -/**   (F),      say   . 
S,E 

The "regret"   is 

r -/"{S.s;   F)  -/**   (F)   =   r(S,s;   F),   say. 

The optimal stock control functions  S  (X*-^» st '^t^  an^ t'^e ^est 

estimator of the distribution F  = Ft lx» ^4.)  must satisfy the 

condition 

r(S , s  ; F ) = min max r{S, s; FJ . 
S,s  F 

Another proposal, much more traditional in probability theory, is 

to assume that the planner has some psychological probability 

distribution G over all possible distributions F, representing his 

relative degrees of belief in their occurrences.  The distribution 

G reflects past experience and general judgment.  Then the optimal 

procedure is to choose the functions S and s so as to minimize the 

expected loss, 
n 

I   X(S,s; F)dG . 

Whether some kind of minimax criterion is adopted or a psychological 

probability approach is taken, it is easy to see that the solution 

will call for functions S, s which really depend on the observations 

X^. .  However, the determination of these functions is still an 

unsolved problem. 

Another case is that in which the "customers" of the organiza— 
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